Mouse Otlx2/RIEG expression in the odontogenic epithelium precedes tooth initiation and requires mesenchyme-derived signals for its maintenance.
نویسندگان
چکیده
The mouse Otlx2 gene is a new member of the paired-like family of homeobox genes whose human homologue, RIEG, is involved in Rieger syndrome, an autosomal-dominant disorder. One of the cardinal features of Rieger syndrome is dental hypoplasia, indicating that Otlx2/RIEG activity is essential for normal tooth development. Here, we analyzed the expression of Otlx2 during mouse tooth development and studied its regulation in dental explants. Otlx2 expression distinguishes stomatodeal from other ectoderm as early as Embryonic Day 8.5, well before tooth initiation. Thereafter, its craniofacial expression becomes restricted to the tooth-forming areas and to the epithelial components of molar and incisor primordia. Although Otlx2 induction precedes the specification of odontogenic mesenchyme, tissue recombination experiments show that the maintenance of its expression requires signals from the mesenchyme and that dental mesenchyme has the capacity to induce ectopic expression of Otlx2 in nondental epithelium. Finally, we compare Otlx2 expression with that of the recently identified homeodomain transcription factor Barx1 expressed in molar mesenchyme. Their strictly complementary expression patterns in the epithelial and mesenchymal components suggest that both genes participate in the reciprocal tissue interactions which are a hallmark of odontogenesis.
منابع مشابه
Expression and regulation of Lhx6 and Lhx7, a novel subfamily of LIM homeodomain encoding genes, suggests a role in mammalian head development.
LIM-homeobox containing (Lhx) genes encode trascriptional regulators which play critical roles in a variety of developmental processes. We have identified two genes belonging to a novel subfamily of mammalian Lhx genes, designated Lhx6 and Lhx7. Whole-mount in situ hybridisation showed that Lhx6 and Lhx7 were expressed during mouse embryogenesis in overlapping domains of the first branchial arc...
متن کاملMouse Serrate-1 (Jagged-1): expression in the developing tooth is regulated by epithelial-mesenchymal interactions and fibroblast growth factor-4.
Serrate-like genes encode transmembrane ligands to Notch receptors and control cell fate decisions during development. In this report, we analyse the regulation of the mouse Serrate-1 gene during embryogenesis. The Serrate-1 gene is expressed from embryonic day 7.5 (E7.5) and expression is often observed at sites of epithelial-mesenchymal interactions, including the developing tooth, where Serr...
متن کاملEpithelial-mesenchymal interactions are required for msx 1 and msx 2 gene expression in the developing murine molar tooth.
Duplication of the msh-like homeobox gene of Drosophila may be related to the evolution of the vertebrate head. The murine homologues of this gene, msx 1 and msx 2 are expressed in the developing craniofacial complex including the branchial arches, especially in regions of epithelial-mesenchymal organogenesis including the developing tooth. By performing in vitro recombination experiments using...
متن کاملInduction of human keratinocytes into enamel-secreting ameloblasts.
Mammalian tooth development relies heavily on the reciprocal and sequential interactions between cranial neural crest-derived mesenchymal cells and stomadial epithelium. During mouse tooth development, odontogenic potential, that is, the capability to direct an adjacent tissue to form a tooth, resides in dental epithelium initially, and shifts subsequently to dental mesenchyme. Recent studies h...
متن کاملFGFs and BMP4 induce both Msx1-independent and Msx1-dependent signaling pathways in early tooth development.
During early tooth development, multiple signaling molecules are expressed in the dental lamina epithelium and induce the dental mesenchyme. One signal, BMP4, has been shown to induce morphologic changes in dental mesenchyme and mesenchymal gene expression via Msx1, but BMP4 cannot substitute for all the inductive functions of the dental epithelium. To investigate the role of FGFs during early ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 189 2 شماره
صفحات -
تاریخ انتشار 1997